Titanium diboride ceramics for solar thermal absorbers

نویسندگان

  • Elisa Sani
  • Marco Meucci
  • Luca Mercatelli
چکیده

Titanium diboride (TiB2) is a low-density refractory material belonging to the family of ultra-high temperature ceramics (UHTCs). This paper reports on the production and microstructural and optical characterization of nearly fully dense TiB2, with particular interest to its potential utilization as novel thermal solar absorber. Monolithic bulk samples are produced starting from elemental reactants by a two-step method consisting of the Self-propagating High-temperature Synthesis (SHS) followed by the Spark Plasma Sintering (SPS) of the resulting powders. The surface of obtained samples has-been characterized from the microstructural and topological points of view. The hemispherical reflectance spectrum has been measured from 0.3 to 15 μm wavelength, to evaluate the potential of this material as solar absorber for future concentrating solar plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suitability of ultra-refractory diboride ceramics as absorbers for solar energy applications

Ultra-refractory diborides are currently studied mainly as thermal protection materials for aerospace and military applications. However, their favourable properties (very high melting points and good thermo-mechanical properties at high temperatures) can be advantageously exploited to increase the operating temperature of thermodynamic solar plants in concentrating solar power systems. This pa...

متن کامل

Optical properties of boride ultra-high temperature ceramics for solar thermal absorbers

It is a known rule that the efficiency of thermodynamic solar plants increases with the working temperature. At present the main limit in temperature upscaling is the absorber capability to withstand high temperatures. The ideal solar absorber works at high temperatures and has both a low thermal emissivity and a high absorptivity in the solar spectral range. The present work reports on the pre...

متن کامل

Optical properties of ZrB2 porous architectures

Porous ceramic materials are currently used as volumetric sunlight absorbers in concentrating solar power systems. As the efficiency of thermodynamic cycles rapidly increases with the operating temperature, the favorable characteristics of so-called ultra-high temperature ceramics (UHTCs) can be successfully exploited in novel solar absorbers. The present work reports, for the first time to the...

متن کامل

review of the mechanical and thermal properties of high temperature Diboride ceramics

Ceramic borides, carbides and nitrides with high melting point, relatively good resistance to oxidation and corrosive environments are considered by many researchers in various high temperature industries, which is known from the family of materials as high temperature ceramic (UHTC). To be. All UHTCs have very strong bonds that give them structural stability at high temperatures, and among the...

متن کامل

Ultra-refractory ceramics for high-temperature solar absorbers

It is well known that the efficiency of thermodynamic solar plants increases with the working temperature. At present the main limit in temperature upscaling is the absorber capability to withstand high temperatures. The ideal solar absorber works at high temperatures, has a low thermal emissivity and a high absorptivity in the solar spectral range . The paper reports on the high temperature em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017